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An amplitude-evolution equation for linearly 
unstable modes in stratified shear flows 
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(Received 5 December 1979 and in revised form 3 August 1981) 

A nonlinear amplitude -3 equa on of second order in time, which governs the temporal 
evolution of linearly unstable modes in stratified shear flows, is derived. It applies to a 
class of flows with continuous velocity and density profiles, and two examples of such 
flows are studied. 

One of the flows that is studied is the stratified Couette flow with the buoyancy 
frequency equal to Qy2, where Q is a constant and y the vertical co-ordinate. The non- 
linear amplitude equation is studied for various values of &. 

For the Garcia flow the nonlinear amplitude equation for the long-wave modes is 
evaluated, and it is compared with the corresponding equation in the Kelvin- 
Helmholtz flow, which has been found previously. 
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1. Introduction 
In  this paper we are concerned with the amplitude-evolution equation for linearly 

unstable modes in parallel shear flows of inviscid, stratified and incompressible fluids. 
It has been shown by Drazin (1970) and Nayfeh & Saric (1972) that the amplitude 
equation is second-order in time in the Kelvin-Helmholtz flow. On the other hand, 
however, Maslowe (1977a) has found that it will be first-order in time in the Holmboe 
flow. An obvious question is whether this difference is due to the fact that the velocity 
and the density profile are discontinuous in the Kelvin-Helmholtz flow, while con- 
tinuous in the Holmboe flow. 

In  this paper it is shown that the amplitude equation may be second-order in time 
in continuous models as well, and two examples of such flows are studied. It depends 
on the dispersion relation for the linear problem whether the amplitude equation will 
be first- or second order in time (Benney & Maslowe 1975). In  general the linear dis- 
persion relation can be written as aa - at = k,(~ - c,) + k , ( ~  - c , ) ~  + . . . , (Engevik 1973a, 
1975), where a, and a are the wavenumbers and cs and c are the wave velocities 
respectively of the neutral mode and the unstable mode contiguous to the neutral one; 
k, and k, are constants. In  the two examples which we consider k, = 0, and the 
amplitude equations are therefore second-order in time. However, the amplitude 
equation will be fist-order in time if the first term in the dispersion relation is the 
dominating term. This is in fact the case studied by Maslowe ( 1 9 7 7 ~ ) .  

One of the flows that is studied is the stratified Couette flow with the buoyancy 
frequency equal to &y2, where Q is a constant and y the vertical co-ordinate (Hlailand 
6 Riis 1968). The nonlinear amplitude equation is studied for various values of &. 

The Garcia model (cf. Drazin & Howard 1966) is considered in the limiting case 
when a,+O (the Kelvin-Helmholtz limit), and the amplitude equation is compared 
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with the amplitude equation in the Kelvin-Helmholtz flow that Drazin (1970) and 
Nayfeh & Saric (1972) have found. 

2. Derivation of the amplitude equation 
We consider a parallel shear flow of a stratified, incompressible fluid with mean- 

velocity profile U(y) and density profile p ( y )  = exp ( -yp(y) dy); the mean velocity 
being in the 2-direction. Both velocity and density are made dimensionless. The flow 
may be confined between two rigid horizontal planes at y = y,, y,, or may extend to 
infinity, i.e. y, and y2 may become -a and +cm respectively. Both U(y) and p(y) 
are assumed to be analytic functions of y E b,, y,]. 

It is aasumed that there exists a stability boundary, and the wavenumber and the 
wave velocity of the neutral mode 4, on this stability boundary are denoted’by a, 
and c,  respectively. The critical layer associated with this neutral mode is at y = y,, 
where ys is given by the equation U(y) = c,. We assume that there is only one critical 
layer, which lies in the interior of the flow field, and that U’(y,) 0, where the prime 
denotes differentiation with respect to y. This means that we do not consider flows 
with critical layers at  the boundaries or the particular problems they pose (see 
Huppert 1973; Engevik 1978). 

With the above assumption the neutral mode 4, is proportional to either of 
the two solutions $* = ( U  - c,)b*”Y*, where v = (& - J,(y,))* E[O, 41. Here J,(ys) = 

l(ys)g( U‘(y,))-a is the local Richardson number at the critical layer, Y* is analytic on 
[yl,y,] and Y*(y,) + 0 (Miles 1961; Engevik 1973b). In  general & is a many-valued 
function, and we choose the neutral solution q5, to be the branch that is given by 
defining arg ( U  - c,) to be zero for U - c,  > 0 and - n for U - c,  < 0 (see appendix A). 
When v = 4, which corresponds to J,(y,) = 0, both $+ = ( U  - c,) Y+ and 9- = Y- are 
analytic on b,, y,] and have no singularity at  the critical layer. 

The wavenumber and the wave velocity of a linearly unstable mode contiguous to 
the neutral one are denoted by a and c respectively. The linear dispersion relation for 
this mode can be written as a2 - a: = k,(c - c,) + k,(c - c,), + . . . (Engevik 1973a, 1975), 
where k,  and k, are constants that are given in appendix A. 

When J,(ys) = 0 the neutral solutions #+ = ( U - c , ) Y +  and 9- = Y- are both 
analytic on [y,, y,] as mentioned previously. This is the case for the two flows that are 
studied in $13 and 4. In  these two models there exist neutral solutions with c,  = 0 ;  
the mode that corresponds to 4+ is antisymmetric, and the one corresponding to 4- 
is symmetric. Both models belong to a class of flows where U(y) is antisymmetric with 
respect to y, p(y) is symmetric with p(0)  = 0, and y1 = -yz. If there exist neutral 
modes with c,  = 0 for such a flow, q5+ will be antisymmetric and 4- symmetric. It 
follows from the expression for k, given in appendix A that k ,  = 0 when q$, = #+, 
and that k, is purely imaginary when 4, = #-. (Because of the analyticity and the 
symmetry properties B(y) = a?/,+. .. and U(y) = bly+b,yS+ ... near y = 0, where 
a, b, and b, are constants. Therefore the integrand of the integral I, in the expression 
for k, has no singularity at y = 0 when 4, = q5+, and it has a pole at y = 0 when 

The purpose of this paper is to investigate how a linearly unstable mode contiguous 
to 4, = (U- c,) q., and for which k ,  = 0, evolves in time. As we have shown, there 
exist flows for which k, becomes equal to zero, and two examples are studied in $93 

$ 8  = qL.) 
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and 4. The linear solution of the perturbation stream function is written as 
E { @ ~ ( Y ,  7 )  eia(x*t)+ c.c.}, where C.C. means complex-conjugate. e2 is a small quantity 
that represents the order of magnitude of the perturbation kinetic energy (see Mas- 
lowe 1977a), and 7 is a slow time scale defined by 7 = apt, where p will subsequently 
be related to e. 

Making the Boussinesq approximation, the perturbation stream function e$ and 
the density ej3 satisfy the equations 

where V2 E a2/ax2 + a2/8y2, and the subscripts x and y denote differentiation with 
respect to x and y respectively. At the boundaries the inviscid boundary conditions 
apply * 

The perturbation stream function and the density are expanded as 

e$ = [ { ~ @ ~ ( y , 7 ) + e 3 @ ~ ( ~ , 7 ) +  ...I eia(x*t)+c.c.] 

+ [{ea@&y,7)+ ...} e2ia(x--c~t)+c.c.] 
+ [Ea@20(y,7) + . . . I  + ..., 

+ [{c2p2(y, 7 )  + . . .} e2ia(x+st) + c.c.] 

+ [E2pao(y,7) + . . . I  + ... . 

(2.3) 

eP = [{ep,(y, 7 )  + e3pS(y, 7 )  + . . .} e*a(x*t)+ c.c.] 

(2.4) 

We introduce (2.3) and (2.4) into (2.1) and obtain 

[{(u-cs)"pl- U"(U-c,) +/3g01}- ip{2(U-c,) vp,,- u"@1,}-p2v;@1,, 
+S~{ (U-C, )~V:@~-  U"(U-cs) @,,+Bq@,,+F3(y,7)}+ . . . I  e(a(x*t) 

+ 44{( U - c,)2V;@, - U"( U - c,) @, + Pg@, + Fl(y, 7 ) )  + . . . ]  e2iab-t) 

- ~ ~ [ ~ @ 2 o y y + + ~ 2 ( Y , ~ ) ) + +  ... 3 +  ... = 0, (2.5) 

where 



where the asterisk means complex conjugate. 
The equations for pl, p, and p2, are obtained from (2.2), i.e. 

(U - ca) P1 = p 1 ,  

( U - d P z  = P'@z-B[@1vP1- @lPl,I, 

PPZO, = i[@l,P? - @&PI+ @1P,v- @TPl,I. 

(2.6b) 

The quantities El3l and F3, represent the nonlinear interactions of the fundamental 
mode with the second harmonic and with the mean-flow distortion respectively. The 
linear solution is expanded in powers of p ,  and we write 

@ 2 ( ~ , 7 )  = A29z1(~), P Z ( Y , ~ )  = A'P~~(Y), @ 2 0 ( ~ , 7 )  = AA*#zol(~), 

~ 2 0 ( ~ , 7 )  = AA*pzm(~), @ 3 ( ~ ,  7 )  = A2A*dl(y)2 P~(Y,T) = A2A*~,1 (~ ) .  

If (2.5) is to be satisfied, the coefficients of exp {ia(x - cat)}, exp {2ia(z - cat)} and 
exp{iO} must all be equal to zero. We introduce the expressions given in (2.10) into 
the coefficients of exp {ia(z - cat)> and exp {2ia(z - cat)), and get the equations 

-(aS-a:)p [ 9 1 2 - a E ]  . 2#s dA ; ~ ; - + E ~ A ~ A * [ L ~ ~ ~ ~ ~ - H ( ~ ) ] + . . .  = 0, (2.11) 

The mean-flow distortion must satisfy the equation (see appendix B) 

pd/d7(AA*) #Ll = -F2(Y,7),  

which gives the coefficient of zero for exp {iO} in (2.5). 

(2.12) 

(2.13) 
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The quantities G(y) and H ( y )  in (2.11) and (2.12) are the nonlinear terms that are 
obtained by introducing the expressions (2.10) into the expressions for Fl and F, in 
(2.6): 

1 
[$; P s  - $8 A 1 9  (2.14) 

G(Y) = - ~ ( ~ ~ c s ) ~ $ ~ ~ : 0 $ s - $ 8 ~ ~ 0 $ : 1 -  2p( u - CS)Z 

HAY) = -Gs 

H(Y) = H d Y )  +HAY) ,  
where 

1 

$s satisfies the equation 
L1$8 = 0, (2.16) 

which follows from (2.1 l ) ,  and ps and pel are given by the equations 

(U - cs) ps = F $ B ,  

( U  - cs) Pel = P ' A l  - i[$; P s  - 9 s A L  
(2.17) 

(2.18) 

which are found by introducing the expressions (2.10) into (2.7) and (2.8). 
In  appendix B it is shown that the equation for $201 is 

which follows from (2.13). It is also found that 

Peo1 = 0. 
If we use (2.16) in (2.11) we get 

(2.19) 

(2.20) 

The terms multiplied by ,u and ye are connected with the linear solution of the problem. 
From (2.21) we can derive the dispersion relation for the linear problem in the general 
case by neglecting the nonlinear terms. Let us show this before we proceed with the 
nonlinear theory for the cases we are interested in. We multiply (2.21) by $s and sub- 
tract from it the two expressions that are obtained by multiplying (2.16) by y& and 
by The result is integrated from y1 to ye along the contour L which goes around 
the critical point ye in the correct way (see appendix A). If, in the linear case, we define 
y by ip = c - cs, then A is proportional to er, and we obtain the following expression 
for the dispersion relation in the general case 

ole--.: = iyk,-y2k,+ ..., (2.22) 
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where the expression for k, is the same as that in appendix A, and 

We see that in the linear case we have definedp in such a way that it may be complex. 
However, for many of the flows that have been studied, it is found that c - cs is purely 
imaginary, and then p is real. This applies to the two examples which are studied in 
$03 and 4, and also for many of the examples given in Drazin & Howard (1966). 

The equations for $12 and $13 are found by introducing the expression (2.22) for 
u2 - u: into the linear version of (2.21) with A proportional to e+. If the coefficients of 
p and p2 are to be zero, $12 and $13 must satisfy the equations 

(2.24) 

Both equations have solutions, since the solution to the corresponding adjoint 
problem is orthogonal to the right-hand side of the equations. The differential operator 
L, is self-adjoint, so that the adjoint function that satisfies the proper boundary 
conditions is 4,. (This is equivalent to multiplying (2.24) or (2.25) by $, and (2.16) 
by or $13, subtracting the one expression from the other and integrating along the 
contour L.) The solution of (2.24) that satisfies the boundary conditions is 

(2.26) 

where C is a constant, $, and 8, are two linearly independent solutions of (2.16), W is 
the Wronskian (which is a constant), and the integration is along L. We put C = 0 
because C + 0 will give rise to a term which may be included in the term A$, in 
(2.10), and means only a redefinition of that term. We write 

(2.27) 

k, given by (2.23) can be transformed into the expression given in appendix A by 
using (2.24) and (2.27). The relation (2.22) is therefore equal to the relation (A 2) in 
appendix A because ip = c - c,. 

After this digression let us go back to the problem that we stated at the beginning 
of this section. We put k, = 0 in (2.24) and (2.25), and introduce $12 and $13 given by 
these equations into (2.21) to obtain 

+ E ~ A ~ A * ( L ~ $ ~ ~ - H ( Y ) ) +  ... = 0. (2.28) 
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We see that the integrands of the integrals in the expressions for k, and k, have no 
singularities on [y,, y2] if /3 = a(y  - ys)a + . . . and U = b,(y - y , )  + b,(y - Y , ) ~  + . . . in 
the vicinity of the critical layer ys ,  where a, b, and b, are constants. We also see from 
(2.12) and (2.19) that q521 and q5201 have no singularities on [y,, y , ] .  This applies to the 
two flows that we are studying in $5  3 and 4, and for other flows having the same type 
of velocity and density profiles (see the discussion at  the beginning of this section). 

Now we multiply (2.28) by q5, and (2.16) by q531, subtract the one expression from 
the other, and integrate along the real axis from y ,  to y,. We obtain 

(2.29) 
d2A ~~,)A-fi'k2;E;i. 2 - 6 W A 2 A * + 0 ( ( d - ~ : ) p , s 4 )  = 0, 

where 
US 

c = c,+c,, ci = ~ ~ ~ ~ i ( Y ) q 5 s d Y / ~ ~ ~ q 5 ; d ~  (i = 122). (2.30) 

We find that the integrals in the numerators in the expressions for C, and C, exist. 

It follows from (2.29) that 
Assume that p2 = O(a2- at) = O(sa), which means that the slow time scale 7 = ad. 

(2.31) 
k,-+at(a'-at) daA A+E%;CA'A* = 0, 

where we have written the amplitude equation in terms of the original fast time 
scale. This amplitude equation is similar to the equation found by Drazin (1970) and 
Nayfeh & Saric (1972) in the Kelvin-Helmholtz flow. Recently Weissman (1979) has 
given a brief review of the various solutions of (2.31) allowing for arbitrary values of 
the constants in the equation. 

Maslowe (1977a) obtained an amplitude equation of first order in time in the 
Holmboe flow (cf. Drazin & Howard 1966); the amplitude evolving on the slow time 
scale 7 = m2t. This is because the first term in the dispersion relation for this flow is 
the dominating term for almost all a,. However, it can be shown by using the formulae 
in appendix A that for the Holmboe flow k, N - 2nia: and k, N - 2at when as + 0 
(i.e. the Kelvin-Helmholtz limit). It means that k, tends to zero with a, faster than 
k, does, which is to be expected from the results of Drazin & Howard (1961, 1963) 
concerning the stability characteristics of unbounded flows for long waves (cf. Drazin 
& Howard 1966). Therefore, when a, becomes small enough it is to be expected that 
the second term in the dispersion relation will be the dominating term, and then the 
amplitude equation will be second-order in time. 

3. Example I 
We consider the case U = y, pg = R, + Qy2 and y ,  = - y ,  = 1, where R, 2 0 and 

Q B 0 (Hnriland 6 Riis 1968). Let Jfi denote the Bessel function of order p, the 
j t h  zero of Jfi, and v = (&-R,)*. When 0 < R, < 1 there exist the neutral modes 
(Engevik 19733) 

c, = 0, ( j  = 1,2,  ..., n,); 
c, = 0, $6 = y*J-,(A,,-,y), a: = a;,-,, = Q-A;,-" (j = 1,2, ..., n2); 

$43 = y q & , y ) ,  a: = a;& = @-A;," 
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where n, and n, are the largest integers that satisfy Q- A:,, 2 0 and Q - h ~ l , ,  2 0 
respectively. For R, = 0 the solutions in (3.1) can be written as 

$, = sin jny, a," = a;,i = Q - (jn),, 

4, = cos (j - 4) n, a: = a;,-+ = Q - ((j - +) n),, 

( 3 4  

(3.3) 

corresponding to the + sign in (3.1 ), and 

corresponding to the - sign. The modes in (3.2) and (3.3) are also given by Hoiland 
& Riis (1968). In  Engevik (19733) is found that for various values of &, k, + 0 for all 
the modes in (3.1) except for those given in (3.2). For the modes in (3.2) k,  = 0, and 
k,, the general formula for which is given in appendix A, is found to be 

26, k, = 6Qjn Si (2n9 - - Si (2nj) Cin (2nj) 
3n 

where the sine and cosine integrals are defined respectively by 

dt .  

Huppert (1973) found that (aclaa), = a for the modes in (3.2) by using Howard's 
(1963) formula. This is in agreement with the result k,  = 0 of Engevik (1973b), 
because the formula for k, given in appendix A is the inverse of Howard's formula. 
Huppert in fact also calculated the inverse of k, and found an expression which has 
been shown to be equivalent to that of (3.4) (Banks & Drazin 1973; Engevik 1 9 7 3 ~ ) .  

has to satisfy (2.12), and when the neutral mode is given by (3.2) we get 

where m2 = Q - 4a;. The boundary conditions are 

$,, = 0 at y = & 1 .  (3.6) 

We see that m2 can be positive, negative or equal to zero. A solution to (3.5) subjected 
to the boundary conditions (3.6) is not obtainable when both a, and 2a, are eigen- 
values of (2.16). When a solution exists, it is easily found, so we do not write down the 
expression for $,,. 

The mean-flow distortion q5iol is found from (2.19), i.e. 

$;Ill = - (2&/Y) sin2jny, (3.7) 

where we have put the constant of integration equal to zero. A non-zero constant of 
integration will give no contribution to the constant C,  in (2.30). 

The amplitude equation becomes 

d2A/dt2 = a0a;(a2-a,2)A +s2aEa2A2A*, (3.8) 

where a, = - k i l ,  a, = a,, + a,, and a,, = - C,/k, ,  a,, = - C,/k, .  a, and a, are real 
constants. 

The coefficient of A in (3.8) is positive. The equation is linearly unstable, but when 
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FIGURE 1. The constant a, as a function of &. 
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FIQURE 2. The constant apl as a function of &. 
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FIGURE 3. The constant aa a function of &. 

a, -= 0 the nonlinear term is stabilizing; when a, > 0 the nonlinear term is destabilizing 
(see Weissman 1979). 

We have made some numerical calculations of k,, a,,, aal and a,,, associated with 
the first mode in (3.2), for various values of Q. The results are shown in figures 1-4. 
It is found that k, is negative, so that there are linearly unstable modes for 
a > al,i = (Q-n,),. 

aZ1 represents the interaction of the fundamental mode with the second harmonic. 
We see from figure 2 that aZl is singular for Q = n2 and Q = in2, which correspond to 
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FIQURE 4. The constant a, aa a function of Q. 

the wavenumbers a, = 0 and a, = in, respectively. The breakdown of the theory is 
due to a resonance which occurs because both a, and 2a, are eigenvalues of (2.16) for 
these particular values of &, as mentioned previously. The right-hand side of (2.12) is 
generally non-zero and solutions of (2.12) are therefore not obtainable for these 
particular values of &. Maslowe (19774 also found a case of resonance in the Holmboe 
flow. 

a,, represents the effect of the mean-flow distortion (figure 3). It is negative and is 
therefore stabilizing. Figure 4 shows a, = asl + as,. 

The calculations were done on a UNIVAC 11 10. In  calculating definite integrals we 
have used a NAG FORTRAN routine which evaluates the integrals using Romberg's 
method. NAG FORTRAN routines for calculating Si (x) and Cin (z) have also been used. 

4. Example 11 
In  this example we will consider the model U = tanh y, pg = 3J0 sech, y tanhay and 

ys = -yl = 00, which was first studied by Garcia (cf. Holmboe 1962; Miles 1963). 
Garcia found the neutral modes 

CS = 0, Jo = +(a,- 1) (a8+ 2), $, = (sechy)m, (4.2) 

which define a stability boundary. 

stability boundary for this model. 
Miles (1963) found that there exists an infinite number of distinct branches of the 
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For the neutral mode in (4.1) k, = 0. In  appendix A k, has been written as 
k, = (I, + I , ) /I , ,  where I, can be expressed as 

where 

and the integrations are along the contour L defined in appendix A. 

and I, given by (4.3),  we obtain 
Introducing g5, given by (4.1) into the expressions for I, and I, given in appendix A, 

(4.4) 

(4.5) 

I I0 = B(%,as) ,  

I ,  = - 2( 1 + 3a, + at)BB(+, a, + 1)/( 1 +as), 

I ,  = ( 2 + 9 a s + 3 a ~ ) B ( + , a , + 1 ) ,  

where B(r, s) denotes the beta function. Using the expressions in (4 .4)  we find that 

k, - -2a i  when a,+O, 

and the dispersion relation in appendix A yields 

c2 - - (a2 - a t ) / 2 a :  N - (a - as)/a8 when a - a, -4 a,, as+ 0 .  (4.6) 

Equation (4 .6)  yields instability on the side of the stability boundary for which 
a > a,. If we put a-a,  a, into the dispersion relation for the Kelvin-Helmholtz 
flow, we obtain the expression given in (4 .6) .  Therefore, as far as the linear theory is 
concerned, the Kelvin-Helmholtz flow is a good model for the smoothly varying 
Garcia flow for modes with wavenumbers satisfying the condition a - as 4 a , .  We 
also notice that the expression for k, given in (4 .5)  is the same rm that found for the 
Holmboe flow (cf. the discussion at the end of $ 2 ) .  

Before we proceed with the nonlinear theory we will calculate k, associated with 
the neutral mode in (4.2). By using the formulae in appendix A, we find that 

which yields instability on the side of the stability boundary for which a < a,. Equa- 
tions (4.6) and (4 .7)  of course predict instability for the same wavenumbers as given 
by Garcia (cf. Drazin t Howard 1966). 

Let us now find the amplitude equation for a linearly unstable mode contiguous to 
the neutral one in (4 .1)  when a, is small. The equation for 5bal becomes 

[ -$ - 4a: + ( 2  + 3a,  + at) sech2y 9,, = (2 + 6a ,  + 2 a 3  (sech y)2+2@ 

- ( 2  + ?a, +#at) (sechy)4+2@, (4.8) 
1 

with the boundary conditions 

q5,,-+O when y+ km.  (4 .9)  

In  (4 .8)  we have neglected the effect of the variation of the inertia due to the hetero- 
geneity of the fluid aa being small compared to  the effect of the buoyancy. 



468 L. Enqevik 

The solution of (4.8) that satisfies the boundary conditions (4.9), is 

4,, = (&+a,-+a~+O(a~)) (sechy)2+8Ks- (a,-&a;+O(a:)) (sechy)%S 

The mean-flow distortion $Lo, is given by (2.19), and becomes 

$Lo1 = - (2 + 601, + 2a3 tanh y (sechy)2+2as, 

when a,+O. (4.10) 

(4.11) 

where we have used the fact that &,,+ 0 when y+ 
We introduce $,, $,, and $iol given by (4. l), (4.10) and (4.11) into the integrals in 

the numerators of the expressions for C, and C, in (2.30). The denominators are equal 
to I, given by (4.4). After some calculations.we obtain 

C, ga:, C, N -$a: when as+O, (4.12) 

co. 

and the amplitude equation becomes 

d2A/dt2 = a,(a - as) A -$($a:) A2A*. (4.13) 

We see from (4.12) that while the effect of the interaction of the fundamental mode 
with the second harmonic is destabilizing, the effect of the interaction of the funda- 
mental mode with the mean-flow distortion is stabilizing. 

The amplitude equation (4.13) is similar to that found by Drazin (1970) and Nayfeh 
& Saric (1972) in the Kelvin-Helmholtz flow. The linear part of our equation is 
found to be in agreement with the linear parts of the equations of Drazin and Nayfeh & 
Saric when these equations are considered in the limit corresponding to the limit 
a,+ 0. However, the numerical value of the nonlinear term is not the same as in the 
Kelvin-Helmholtz flow. The nonlinear term is, however, of the same order of magni- 
tude and is stabilizing, as in that case. 

5. Conclusion 
There exist flows with continuous velocity and density profiles where there are 

near-neutral, linearly unstable modes with nonlinear amplitude equations of second 
order in time. The H d a n d  & Riis model and the Garcia model are two examples of 
such flows. The amplitude equations are second-order in time because the linear 
dispersion relations for the unstable modes are given by aa - af = @(c - c , ) ~  + .. . in 
these cases. In  general it depends on the linear dispersion relation whether the ampli- 
tude equation will be first- or second-order in time. If the first term in the dispersion 
relation given in appendix A is the dominating term, the amplitude equation will be 
first-order in time, which is the case considered by Maslowe (19774 who studied the 
Holmboe flow. 

The nonlinear amplitude equation for a linearly unstable mode contiguous to the 
neutral one, sin ny, in the Hailand & Riis flow is studied for various values of Q which 
represent an overall Richardson number. Some numerical results are presented in fig- 
ures 1-4. We find that there is a region on the&-axis where the nonlinear term is 
positive, and it is therefore destabilizing for these values of Q. However, the nonlinear 
term is stabilizing when Q becomes large enough. 

The Garcia flow has been studied in the limit when a,+ 0 (i.e. the Kelvin-Helmholtz 
limit), and it is found that the linear part of the amplitude equation coincides with 
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the linear parts of the equations obtained by Drazin (1970) and Nayfeh & Saric (1972) 
in the Kelvin-Helmholtz flow, when their equations are considered in the limit 
a, + 0. The nonlinear terms in the Garcia flow and in the Kelvin-Helmholtz flow do 
not have the same numerical value. They are, however, of the same order of magni- 
tude, and are stabilizing in both cases. 

In  this paper the diffusive effects have not been taken into account except when the 
contour L is chosen, A little viscosity will change the trajectories in the phase plane 
for the solutions of the amplitude equation (2.31), as was also pointed out by Drazin 
(1970) in connection with the solution he obtained in the Kelvin-Helmholtz flow. In  
our model this is seen by adding the diffusive terms to (2.1) and (2.2). It will give rise 
to  an additional term proportional to dA/dt (a damping term) in the amplitude 
equation and this term will change the trajectories in the phase plane. 

Appendix A 
It is assumed that U ( y )  andp(y) are analytic functions on bl, ye], and that there is 

only one critical layer in the interior of the flow field, i.e. we do not consider cases with 
critical layers at the boundaries. The critical layer is at y = ys, where y1 < ys < ye, 
and we assume that U'(ys) 4 0. 

The neutral mode #,, with the wave velocity c, and the wavenumber ae, satisfies 
the Taylor-Goldstein equation 

a:) 9 = 0. 
U" 

9 " + ( ( u 5 , ) 2 - ~ -  
Equation (A 1) has a regular singularity at the critical layer 9,. As is well-known 

this singularity can be removed by introducing dissipative effects. A small viscosity 
within the critical layer will give rise to a phase change across the layer. We consider 
the solutions on a contour L that goes around the critical point in the correct way, 
i.e. in accordance with the phase change across the layer. arg(U-c,) is defined to 
bezerofor U-c,>Oand -nforU-c,<O. 

With the above assumption the neutral solution 4, is proportional to either of 
the two solutions 4% = (U-c,))fvY*, where v = ( ~ - J & J ) ~ E [ O ,  41. Here .I&,) = 
@(y,)g(U'(y,))-a is the local Richardson number at the critical layer y = ys, Yi is 
analytic on [yl,ya], and Yk(ys) $; 0 (Miles 1961; Engevik 1973b). In  general #* is a 
many-valued function, and we choose the branch for 4, that is in accordance with 
the definition of arg (U-c,) above, i.e. & = (U-c,)~*"Y* for U - c ,  > 0 and 
#* = exp { - in(* f v)}l U - c,lf*v Y* for U - c8 < 0. #* is analytic on L. 

In  Engevik (1973a, 1976) the linear dispersion relation for an unstable mode 
contiguous to the neutral one is written as 

aa-a," = k ~ ( c - ~ ~ ) + k ~ ( c - ~ , ) ~ +  ..., 
where 
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where the integration is along L. 8, is a solution of (A l ) ,  and 8, and $, are linearly 
independent solutions. W is the Wronskian, which is a constant in this case, and 

Appendix B 
When the Boussinesq approximation has been applied the equation for the per- 

turbation vorticity is 

(B 1) 
(it+ u&) v2$- u"$x+€($yv"x-$xv~$y)-~p~ 9 = 0. 

Equation (2.1) is obtained by eliminating px between (B 1)  and (2.2). @)20(yy7) must 
satisfy (B l) ,  i.e. 

where 
P@20yyr = - F2(Y, 7 ) ,  

F2(y,7) = -i[@,,Vp€y- @:Yvf@l+ @Jf@&- aqvq alY]. 

PP2or = i [@ll /P:  - @?VP1+ @ l P k  - @TPlVI, 

(B 2) 

The equation for pZ0(y,7) is obtained from (2.2), i.e. 

(B 3) 

where pl is given by (2.7). 
We introduce the expression for O1(y, 7) given by (2.10) into the expression for 

F2(y, 7). In the cases in which we are interested, $, is a real function, and $12 is purely 
imaginary. That $12 is purely imaginary follows from (2.27), since k, = 0 in our case. 
Consequently $,* = $, and $:2 = - $12, which yields 

d 
F2(y,7) = -ip- a7 LAA*l [ $ 1 2 V % $ ~ - $ ~ V f 0 $ 1 ~ + $ ~ 2 V f 0 $ ,  -$8vfO&21 

= - p - [ A A * ]  d7 [( - (U-C8)3 2/3g + (U-C,)2 u" ) $:Ip, 
where we have used (2.16) and (2.24) for $8 and $12 and the fact that k, = 0. 

we get 
Introducing the expression for @,,(y,7) given by (2.10) into (B 2) and using (B a), 

$201 given by (B 5 )  will have no singularity on [yl, y2] for the flows studied in $5 3 and 4 
or for any other flows of the same class (of. $2). 

The right-hand side of (B 3) is found to be zero when we introduce p1 given by (2.7) 
into it. Therefore 

P20l = 0. (B 6 )  
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Equation (B 5 )  also gives Schade’s result for the inviscid mean-flow distortion 
(Schade 1964, (16)). In  Schade’s case U = tanh y, /3 = 0 and g5s = sech y.  It should be 
noted that in this case g512 is not purely imaginary, because k, is now purely imaginary. 
However, we obtain (B 5 )  also in this case (with p = 0 of course), but in addition we 
get A dA*/dr = A* dA/d.r. In Schade’s case the mean-flow distortion given by (B 5 )  
is singular at the critical layer, and he therefore rejected it. Instead he included the 
effect of the viscosity within the critical layer, and found that the mean-flow distor- 
tion had to be zero for infinite Reynolds number. 

Maslowe (1977 b) considered the mean-flow distortion for finite Reynolds numbers 
for the model studied by Schade. Recently Huerre (1980) studied the same model and 
found that the effect of the mean-flow distortion should not be neglected. 
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