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A nonlinear amplitude equation of second order in time, which governs the temporal
evolution of linearly unstable modes in stratified shear flows, is derived. It applies to a
class of flows with continuous velocity and density profiles, and two examples of such
flows are studied.

One of the flows that is studied is the stratified Couette flow with the buoyancy
frequency equal to @2, where @ is a constant and y the vertical co-ordinate. The non-
linear amplitude equation is studied for various values of @.

For the Garcia flow the nonlinear amplitude equation for the long-wave modes is
evaluated, and it is compared with the corresponding equation in the Kelvin-
Helmbholtz flow, which has been found previously.

1. Introduction

In this paper we are concerned with the amplitude-evolution equation for linearly
unstable modes in parallel shear flows of inviscid, stratified and incompressible fluids.
It has been shown by Drazin (1970) and Nayfeh & Saric (1972) that the amplitude
equation is second-order in time in the Kelvin-Helmholtz flow. On the other hand,
however, Maslowe (1977a) has found that it will be first-order in time in the Holmboe
flow. An obvious question is whether this difference is due to the fact that the velocity
and the density profile are discontinuous in the Kelvin—-Helmholtz flow, while con-
tinuous in the Holmboe flow.

In this paper it is shown that the amplitude equation may be second-order in time
in continuous models as well, and two examples of such flows are studied. It depends
on the dispersion relation for the linear problem whether the amplitude equation will
be first- or second order in time (Benney & Maslowe 1975). In general the linear dis-
persion relation can be written as a?— a2 = k,(c — ¢s) + ky(c —¢5)2+ ..., (Engevik 1973a,
1975), where as and « are the wavenumbers and ¢; and ¢ are the wave velocities
respectively of the neutral mode and the unstable mode contiguous to the neutral one;
k, and k, are constants. In the two examples which we consider k, = 0, and the
amplitude equations are therefore second-order in time. However, the amplitude
equation will be first-order in time if the first term in the dispersion relation is the
dominating term. This is in fact the case studied by Maslowe (1977 a).

One of the flows that is studied is the stratified Couette flow with the buoyancy
frequency equal to @y, where @ is a constant and y the vertical co-ordinate (Hpiland
& Riis 1968). The nonlinear amplitude equation is studied for various values of Q.

The Garcia model (c¢f. Drazin & Howard 1966) is considered in the limiting case
when a5 — 0 (the Kelvin—Helmholtz limit), and the amplitude equation is compared
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with the amplitude equation in the Kelvin-Helmholtz flow that Drazin (1970) and
Nayfeh & Saric (1972) have found.

2. Derivation of the amplitude equation

We consider a parallel shear flow of a stratified, incompressible fluid with mean-
velocity profile U(y) and density profile 5(y) = exp (— _f Y8(y)dy); the mean velocity
being in the z-direction. Both velocity and density are made dimensionless. The flow
may be confined between two rigid horizontal planes at y = ¥,, ¥,, or may extend to
infinity, i.e. y, and y, may become —oo and + oo respectively. Both U(y) and A(y)
are assumed to be analytic functions of y € [y,,y,].

It is assumed that there exists a stability boundary, and the wavenumber and the
wave velocity of the neutral mode ¢ on this stability boundary are denoted by as
and ¢, respectively. The critical layer associated with this neutral mode is at y = ys,
where y; is given by the equation U(y) = cs. We assume that there is only one critical
layer, which lies in the interior of the flow field, and that U’(ys) 3 0, where the prime
denotes differentiation with respect to y. This means that we do not consider flows
with critical layers at the boundaries or the particular problems they pose (see
Huppert 1973; Engevik 1978).

With the above assumption the neutral mode ¢s is proportional to either of
the two solutions ¢y = (U —ce)d+*Ys, where v = (}—~J(ys))t€[0,3]. Here Ji(ys) =
Bys)g(U'(ys))~2 is the local Richardson number at the critical layer, Y. is analytic on
[41,¥2) and Yi(ys) + 0 (Miles 1961; Engevik 1973b). In general ¢ is a many-valued
function, and we choose the neutral solution ¢s to be the branch that is given by
defining arg (U —cs) to be zero for U —c¢s > 0 and —m for U —cs < 0 (see appendix A).
When » = }, which corresponds to Jj(ys) = 0, both ¢, = (U —¢s)Y, and ¢_= Y_ are
analytic on [y,,%,] and have no singularity at the critical layer.

The wavenumber and the wave velocity of a linearly unstable mode contiguous to
the neutral one are denoted by a and ¢ respectively. The linear dispersion relation for
this mode can be written as a® — a2 = k,(c — ¢s) + ky(c — cs)%+ ... (Engevik 19734, 1975),
where k, and k, are constants that are given in appendix A.

When Jj(ys) = 0 the neutral solutions ¢, = (U—cs)Y, and ¢_=Y_ are both
analytic on [y,, ¥,] a8 mentioned previously. This is the case for the two flows that are
studied in §§3 and 4. In these two models there exist neutral solutions with ¢s = 0;
the mode that corresponds to ¢, is antisymmetric, and the one corresponding to ¢_
is symmetric. Both models belong to a class of flows where U (y) is antisymmetric with
respect to y, B(y) is symmetric with 8(0) = 0, and y, = —y,. If there exist neutral
modes with ¢s = 0 for such a flow, ¢, will be antisymmetric and ¢_ symmetric. It
follows from the expression for k, given in appendix A that k, = 0 when ¢s = ¢,
and that k, is purely imaginary when ¢s = ¢_. (Because of the analyticity and the
symmetry properties A(y) = ay®+... and U(y) = b,y +bsy®+ ... near y = 0, where
a, b, and bg are constants. Therefore the integrand of the integral I, in the expression
for k, has no singularity at y = 0 when ¢s = ¢, and it has a pole at y = 0 when
$s = ¢_.)

The purpose of this paper is to investigate how a linearly unstable mode contiguous
to ¢ = (U —¢s)Y,, and for which k;, = 0, evolves in time. As we have shown, there
exist flows for which k, becomes equal to zero, and two examples are studied in §§3
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and 4. The linear solution of the perturbation stream function is written as
e{®,(y, 7) e*@s 1 ¢c.c.}, where c.c. means complex-conjugate. €? is a small quantity
that represents the order of magnitude of the perturbation kinetic energy (see Mas-
lowe 1977a), and 7 is a slow time scale defined by 7 = aut, where x will subsequently
be related to e.

Making the Boussinesq approximation, the perturbation stream function e and
the density ep satisfy the equations

o 9\ NI
(G+U5) V-0 (5+ V) Pt Pabe
+€ (%'f' Ua—ax) [ﬁvvzﬁz— ﬁzvaﬁu]'*‘e%a'%[ﬁvﬁz—ﬁzﬁv] =0, (21)

(a ax)” Ple—e(lyPa—V2Py) (2.2)

where V2 = 92/0x2+ 82/0y?, and the subscripts # and y denote differentiation with
respect to x and y respectively. At the boundaries the inviscid boundary conditions

apply.
p'Il)‘lz; perturbation stream function and the density are expanded as
el = [{eDy(y,7) +3Dg(y, 7) + ...} eleE—b ¢ c.]
+ [{€2@y(y, 7) + ...} eRic@—ad 4 ¢.c.]
+ Doy, 7) + ... ]+ oo (2.3)
ep = [{ep,(y, 7) +€3p5(y, T) + ... } et*@—=D 1+ ¢.c.]
+ [{e?pg(y, T) + ...} eBix@—sb + ¢ c.]
+ 2050y, T)+ ... ]+ ... (2.4)

We introduce (2.3) and (2.4) into (2.1) and obtain

[{(U —ce)2Vi®, — U"(U —¢5) @y + fg @y} — ip{2(U — ¢5) Vi®@y, — U@y, } — p2V1 Dy,
+€3{(U = ¢s)2Vi @3 — U"(U — ¢s) @3+ Bg P + Fi(y, 7)} + ... ] efr@—asd)
+e[4{(U —cs)2 Vi, — U (U —c¢s) Oy + fgP,+ Fy(y, 7)} + ... ] e2ialz—c)
= u[{pP@a0yy, + By, 7}, +...1+... = 0, (2.5)

where

Vz=d

2 2
ﬂ—az, V3 —i-—4oc2,

dy?

and the subscript 7 denotes differentiation with respect to 7.

Fi(y,7) = }(U —¢s) [0, V1D, — O, VI D, ] +&%[d>mp1— ®,0,,],

Fy(y,7) = —i[®,, V OF — OLVID, + B,V O, — DIVED,,], (2.6a)

Fa(y’ T) = Fs1(y»7') +Fsz(y:7)»
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where
Fuly, 1) = (U —cs) [20F, Vi D, — 20,V OF, + OFVE D, — O, VI DF
+= [2(D1vP2 — 2@, pf, + PTpay — Py AT,
Foo(y,7) = (U — ) [ Dy, Vi, — D, D4y, +% [D20y01 — P1P20y)5

where the asterisk means complex conjugate.
The equations for p,, p, and p,, are obtained from (2.2), i.e.

(U=cs)p, = p'Dy,
(U—cs)pp = p' Py =4[ Dy, 01— D191, )s
HP20r = i[(blupf — O} p,+ O, Pfy - o Pyl

]

(2.6b)

(2.7)
(2.8)
(2.9)

The quantities Fy, and Fy, represent the nonlinear interactions of the fundamental
mode with the second harmonic and with the mean-flow distortion respectively. The

linear solution is expanded in powers of x, and we write

A d24
Ou(y,7) = Alr) $ol) + 1o Brale) + 12T Bra®) + -

dA d24
PrY;7) = A7) ps(y) + Lo Pra(y) + B2 o5 P1a() + -
Ooly,7) = A% (y), Py, 7) = A%051(Y), Doy, T) = AA*Pye(y),
Pao(y,T) = AA*pog (y), Daly,7) = A2A*Gyy(y), paly,7) = A2A*py(y).

If (2.5) is to be satisfied, the coefficients of exp {ia(x — cst)}, exp {2ia(r—

(2.10)

cst)} and

exp{i0} must all be equal to zero. We introduce the expressions given in (2.10) into
the coefficients of exp {ia(x —cqt)} and exp {2ia(x —ct)}, and get the equations

[ U dA
AL @ - pud 41| Lo i (g Vobe— reemnte) |
S 2 1 a4
+ut [L1¢‘13—" ('ﬁ__%vﬁo?sm )2¢12) U= )2 1o¢S] ar?
_ . 9
(@) [ i L | G 4 AL g~ HON
Lydy = Qly),
where
2 @@ 2 § 2
VloEW"%, VzoEd_yz_‘ias,
Bg u” 5 Bg ur
= 2 — p— —
L1~V1°+(U—cs)2 U—cs’ L2_V2°+(U—cs)2 U—cs

The mean-flow distortion must satisfy the equation (see appendix B)

M d/dT(AA*) ¢’2'01 == Fa(y’ ),

which gives the coefficient of zero for exp {0} in (2.5).

=0, (2.11)

(2.12)

(2.13)
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The quantities G(y) and H(y) in (2.11) and (2.12) are the nonlinear terms that are
obtained by introducing the expressions (2.10) into the expressions for F; and F; in
(2.6):

Gly) = - E(Ul_—cs) [Bs Viods — PsVio bl — 2ﬁ(+__cs)z (fsps—Pspsl,  (2.14)

H(y) = H(y) + Hy(y),
where

Hy(y) = — s (263 Viohn = 26V gl + 6 Vo~ $uVh 801

s 26 o = 2upl 4 B~ Fstl) (218

Hy(y) = — U+cs [B201 ViePs — s Poon] — ;‘)_(I-Jg_—cs)“* [$201P5 — P Paoa)- )

¢s satisfies the equation

L,¢s =0, (2.16)

which follows from (2.11), and ps and p,, are given by the equations
(U —¢s) ps = P’ pss (2.17)
(U ~c¢s) pay = P’ o1 — }[Ps Ps — $sPc), (2.18)

which are found by introducing the expressions (2.10) into (2.7) and (2.8).
In appendix B it is shown that the equation for ¢, is

- 2ﬂg U . ’
b= | (~ e wme) # - (#19)

which follows from (2.13). It is also found that
P21 = 0. (2.20)

If we use (2.16) in (2.11) we get

. U’ dA
—(a®—a2) s A +p {Ll Prati ((U2fis)3 (U- Cs)z) ¢s} dr

2 U’ 1 d24
+u2 {L1¢13—"(‘[7‘__E‘ ViePra— T—ca)? ¢12) (U —cal 1o¢S} are
— (= a) =i ) T AL g = B+ = 0. (221)

The terms multiplied by x and z2 are connected with the linear solution of the problem.
From (2.21) we can derive the dispersion relation for the linear problem in the general
case by neglecting the nonlinear terms. Let us show this before we proceed with the
nonlinear theory for the cases we are interested in. We multiply (2.21) by ¢ and sub-
tract from it the two expressions that are obtained by multiplying (2.16) by x¢,, and
by u?¢,s. The result is integrated from y, to y, along the contour L which goes around
the critical point ys in the correct way (see appendix A). If, in the linear case, we define
1 by tu = ¢ —cg, then 4 is proportional to e7, and we obtain the following expression
for the dispersion relation in the general case

at—al =iuk, - pPky+ ..., (2.22)



462 L. Engevik

where the expression for &, is the same as that in appendix A, and

fa = [fL {i (.U%Cs V%°¢12_(_U[i_’;s)2¢12+k1 ¢12)
((U lc V§o¢5+2k1¢s)}¢s ]{f ¢2dy} . (2.23)

We see that in the linear case we have defined x in such a way that it may be complex.
However, for many of the flows that have been studied, it is found that ¢ — ¢ is purely
imaginary, and then y is real. This applies to the two examples which are studied in
§§3 and 4, and also for many of the examples given in Drazin & Howard (1966).

The equations for ¢,, and ¢,; are found by introducing the expression (2.22) for
a?—oa? into the linear version of (2.21) with A4 proportional to e’. If the coefficients of
f and p? are to be zero, ¢, and ¢,; must satisfy the equations

2 u”
Lygyy=—1 ((Ufis)a— T—ca)f ~ ) ¢s = 1y, (2.24)

U”
Ligis= "(Uz Vi dra— Y )2¢12+k ¢12)

X
e o ) e @29

Both equations have solutions, since the solution to the corresponding adjoint
problem is orthogonal to the right-hand side of the equations. The differential operator
L, is self-adjoint, so that the adjoint function that satisfies the proper boundary
conditions is ¢,. (This is equivalent to multiplying (2.24) or (2.25) by ¢s and (2.16)
by ¢, OF 5, subtracting the one expression from the other and integrating along the
contour L.) The solution of (2.24) that satisfies the boundary conditions is

_ . ¥ J,0s nd; ds ]
¢12_ngss+z[¢§,Ll W dt+BsL W at, (2.26)

where C is a constant, ¢5 and 6, are two linearly independent solutions of (2.16), W is
the Wronskian (which is a constant), and the integration is along L. We put € = 0
because C + 0 will give rise to a term which may be included in the term Ags in
(2.10), and means only a redefinition of that term. We write

@s = 10,, where 0, = ¢, Jlu?sdt 6sf *h ¢sdt (2.27)
ky given by (2.23) can be transformed into the expression given in appendix A by
using (2.24) and (2.27). The relation (2.22) is therefore equal to the relation (A 2) in
appendix A because iy = ¢ —cs.

After this digression let us go back to the problem that we stated at the beginning
of this section. We put &, = 0in (2.24) and (2.25), and introduce ¢,, and ¢,; given by
these equations into (2.21) to obtain

d2A 27r¢s
dr? (e (¢12 )d_T
+e2A24A*(L, b5, — H(y))+... = 0. (2.28)

—(a®—a2) P A — pky Ps
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We see that the integrands of the integrals in the expressions for k, and &, have no
singularities on [y,,%,] if f=a(y—ys)2+... and U =b,(y—ys) +b(y—ys)®+ ... in
the vicinity of the critical layer ys, where a, b, and b, are constants. We also see from
(2.12) and (2.19) that ¢, and ¢y, have no singularities on [y,, ¥,]. This applies to the
two flows that we are studying in §§3 and 4, and for other flows having the same type
of velocity and density profiles (see the discussion at the beginning of this section).

Now we multiply (2.28) by ¢ and (2.16) by ¢s,, subtract the one expression from
the other, and integrate along the real axis from y, to y,. We obtain

2
—(x2—ad) 4 —p‘*‘ka‘fi—;;l —e2CA2A*+O((a®—a2) p,e?) = 0, (2.29)
where
C=0,+0, C, =I”'H,.(y)¢sdy/r'¢gdy (G =1,2). (2.30)
n "N

We find that the integrals in the numerators in the expressions for C, and C, exist.

Assume that p? = O(a?—a?) = O(€?), which means that the slow time scale 7 = ael.
It follows from (2.29) that

kdﬂA 2( 2 — o2 3,20 424% = 2.31
2W+“s(“ a?) A + e2a2C =0, (2.31)
where we have written the amplitude equation in terms of the original fast time
scale. This amplitude equation is similar to the equation found by Drazin (1970) and
Nayfeh & Saric (1972) in the Kelvin—-Helmholtz flow. Recently Weissman (1979) has
given a brief review of the various solutions of (2.31) allowing for arbitrary values of
the constants in the equation.

Maslowe (1977a) obtained an amplitude equation of first order in time in the
Holmboe flow (cf. Drazin & Howard 1966); the amplitude evolving on the slow time
scale 7 = ae?. This is because the first term in the dispersion relation for this flow is
the dominating term for almost all as. However, it can be shown by using the formulae
in appendix A that for the Holmboe flow k, ~ —2miad and k, ~ — 2a2 when a;—>0
(i.e. the Kelvin-Helmholtz limit). It means that k, tends to zero with a, faster than
k, does, which is to be expected from the results of Drazin & Howard (1961, 1963)
concerning the stability characteristics of unbounded flows for long waves (cf. Drazin
& Howard 1966). Therefore, when a5 becomes small enough it is to be expected that
the second term in the dispersion relation will be the dominating term, and then the
amplitude equation will be second-order in time.

3. Example I

We consider the case U =y, fg = Ry+@Qy® and y, = —y, = 1, where R, > 0 and
@ > 0 (Heiland & Riis 1968). Let J, denote the Bessel function of order 4,4, , the
Jjth zero of J,, and v = (3—R,)}. When 0 < R, < } there exist the neutral modes
(Engevik 1973b)

s =0, ¢s= y}Jv(AJ,vy): af = a?‘v = Q_/\?,v U=12,...,m);

. 3.1
cs=0, ¢s= y‘l’J_,,(/\,,_,,y), al=al_,=Q-A}_, (j=1,2, ...,nz);} (3.1)
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where 7, and n, are the largest integers that satisfy @ — A2 , > 0 and @Q—23_ _, > 0
respectively. For R, = 0 the solutions in (3.1) can be written as

¢s = sinjmy, af=ajy=Q—(jm)? (3.2)
corresponding to the + sign in (3.1), and
ga=cos(j—H)m of=aj 3 =Q-((j—1m)? (3.3)

corresponding to the — sign. The modes in (3.2) and (3.3) are also given by Heiland
& Riis (1968). In Engevik (19735) is found that for various values of @, k, #+ 0 for all
the modes in (3.1) except for those given in (3.2). For the modes in (3.2) k, = 0, and
k,, the general formula for which is given in appendix A, is found to be

2
ky = 6QjmSi (2mj) — %9"— Si (2#7) Cin (2m7)

2 11 Y 1gq1 '
_QU' Msﬂgﬂjy)dy_}‘ MCin(%jy)dy], (3.4)
Jm LJo y o Y

where the sine and cosine integrals are defined respectively by
T o —
Si(z) = J‘ &, Cin) = f’ ! 2
0 0

Huppert (1973) found that (dc/da), = co for the modes in (3.2) by using Howard’s

(1963) formula. This is in agreement with the result k, = 0 of Engevik (19735),

because the formula for &, given in appendix A is the inverse of Howard’s formula.

Huppert in fact also calculated the inverse of k, and found an expression which has

been shown to be equivalent to that of (3.4) (Banks & Drazin 1973; Engevik 1973a).
¢, has to satisfy (2.12), and when the neutral mode is given by (3.2) we get

” 1 g
@1 +mipy, = 3 (_Qgi?/ - 5—2) sin?jmy, (3.5)
where m? = @ — 4a?. The boundary conditions are
$n=0 at y=+1. (3.6)

We see that m? can be positive, negative or equal to zero. A solution to (3.5) subjected
to the boundary conditions (3.6) is not obtainable when both s and 2as are eigen-
values of (2.16). When a solution exists, it is easily found, so we do not write down the
expression for ¢,,.

The mean-flow distortion ¢y, is found from (2.19), i.e.

$on = —(2Q/y)sin?jmy, (3.7)

where we have put the constant of integration equal to zero. A non-zero constant of
integration will give no contribution to the constant C, in (2.30).
The amplitude equation becomes

d*A jdt? = ayol(a?—al) A +e2ala, A24*, (3.8)
where a, = — k31, ay = ay;+ayy and ay, = —C,/ky, agy = —C,/k,. a, and a, are real
constants.

The coefficient of A4 in (3.8) is positive. The equation is linearly unstable, but when
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Figure 2. The constant a,, as a function of Q.
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Ficure 3. The constant a,, as a function of Q.

@, < Othe nonlinear term is stabilizing; when a, > 0 the nonlinear term is destabilizing
(see Weissman 1979),

We have made some numerical calculations of k,, ay, a,, and a,,, associated with
the first mode in (3.2), for various values of . The results are shown in figures 1-4.
It is found that k, is negative, so that there are linearly unstable modes for
a>a ;= (Q-nt

ay, represents the interaction of the fundamental mode with the second harmoniec.
We see from figure 2 that a,, is singular for @ = 72 and @ = a2, which correspond to



466 L. Engevik

az

501

Q-

i
u
i
|
|
1
|
|
|
|
|
|
|
:
|
i
|
|
|
|
|
|
|
|

FicURE 4. The constant a4 as a function of @.

the wavenumbers as = 0 and as = 37 respectively. The breakdown of the theory is
due to a resonance which occurs because both a; and 2a, are eigenvalues of (2.16) for
these particular values of @, as mentioned previously. The right-hand side of (2.12) is
generally non-zero and solutions of (2.12) are therefore not obtainable for these
particular values of Q. Maslowe (1977a) also found a case of resonance in the Holmboe
flow.

a,, represents the effect of the mean-flow distortion (figure 3). It is negative and is
therefore stabilizing. Figure 4 shows a, = a4, + ay,.

The calculations were done on a uNIvac 1110. In calculating definite integrals we
have used a NAG FORTRAN routine which evaluates the integrals using Romberg’s
method. NAG FORTRAN routines for calculating Si(z) and Cin (x) have also been used.

4, Example II

In this example we will consider the model U = tanhy, fig = 3Jysech?y tanh?y and
Ya = —Y, = 0, which was first studied by Garcia (cf. Holmboe 1962; Miles 1963).
Garcia found the neutral modes

cs =0, Jy=}as(@:s+3), ¢s = tanhy(sechy)s, (4.1)
cs=0, Jy=*%os—1)(as+2), ¢Ps= (sechy), (4.2)
which define a stability boundary.

Miles (1963) found that there exists an infinite number of distinct branches of the
stability boundary for this model.
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For the neutral mode in (4.1) k, = 0. In appendix A k, has been written as
ky, = (I3+1I;)/I,, where I, can be expressed as

I,= f X@tdy [ ¢rtas f ® X¢tdu, (4.3)
L —
where ‘

_2pg U
= U=cp W=ar ™
and the integrations are along the contour L defined in appendix A.

Introducing ¢, given by (4.1) into the expressions for I and I given in appendix A,
and I, given by (4.3), we obtain

I, = B(},as),
I, = —2(14+30s+a2)2B(},as+ 1)/(1+a5), (4.4)
I, = (2+9as+3a2) B(},as+ 1),
where B(r, s) denotes the beta function. Using the expressions in (4.4) we find that
ky ~ =222 when o3>0, (4.5)
and the dispersion relation in appendix A yields
2~ —(a2—ag) /202 ~ —(a—as)/as when a—as<as as—>0. (4.6)

Equation (4.6) yields instability on the side of the stability boundary for which
a > ag. If we put a —as € @, into the dispersion relation for the Kelvin—Helmholtz
flow, we obtain the expression given in (4.6). Therefore, as far as the linear theory is
concerned, the Kelvin-Helmholtz flow is a good model for the smoothly varying
Garcia flow for modes with wavenumbers satisfying the condition a—as € as. We
also notice that the expression for k, given in (4.5) is the same as that found for the
Holmboe flow (cf. the discussion at the end of §2).

Before we proceed with the nonlinear theory we will calculate k, associated with
the neutral mode in (4.2). By using the formulae in appendix A, we find that

k, = i(2+6Jy) 7/ B(%, as), }

¢ = —iB(},as) (02 —ad)/(2+6J) m+ ..., (4.7)

which yields instability on the side of the stability boundary for which & < a;. Equa-
tions (4.6) and (4.7) of course predict instability for the same wavenumbers as given
by Garcia (cf. Drazin & Howard 1966).

Let us now find the amplitude equation for a linearly unstable mode contiguous to
the neutral one in (4.1) when a, is small. The equation for ¢, becomes

3
[-l% —4a2 4 (2+ 3ag + a2)sech? y] a1 = (2+ 6as+ 2a2) (sech y)2+2as
—(2+ Yas+5a2) (sech y)i+is, (4.8)

with the boundary conditions
$s1—>0 when y—> +oo. (4.9)

In (4.8) we have neglected the effect of the variation of the inertia due to the hetero-
geneity of the fluid as being small compared to the effect of the buoyancy.
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The solution of (4.8) that satisfies the boundary conditions (4.9), is
P = (3 +as—Fog + 0(a)) (sech y)+22 — (s — g + O(ag)) (sech y) e
when a3—>0. (4.10)
The mean-flow distortion ¢, is given by (2.19), and becomes

201 = — (2 + 6as + 2a2) tanh y (sech y)2+2xs, 4.11)
01

where we have used the fact that ¢y, - 0 when y— 1 oo.

We introduce ¢s, @y, and ¢y, given by (4.1), (4.10) and (4.11) into the integrals in
the numerators of the expressions for C, and C, in (2.30). The denominators are equal
to I, given by (4.4). After some calculations we obtain

Ci~%ad, Cy~—%a® when a;—0, (4.12)
and the amplitude equation becomes
d24 [di? = ag(a—as) A —e*(fald) A24*. (4.13)

We see from (4.12) that while the effect of the interaction of the fundamental mode
with the second harmonic is destabilizing, the effect of the interaction of the funda-
mental mode with the mean-flow distortion is stabilizing.

The amplitude equation (4.13) is similar to that found by Drazin (1970) and Nayfeh
& Saric (1972) in the Kelvin—Helmholtz flow. The linear part of our equation is
found to be in agreement with the linear parts of the equations of Drazin and Nayfeh &
Saric when these equations are considered in the limit corresponding to the limit
as— 0. However, the numerical value of the nonlinear term is not the same as in the
Kelvin-Helmholtz flow. The nonlinear term is, however, of the same order of magni-
tude and is stabilizing, as in that case.

5. Conclusion

There exist flows with continuous velocity and density profiles where there are
near-neutral, linearly unstable modes with nonlinear amplitude equations of second
order in time. The Hgiland & Riis model and the Garcia model are two examples of
such flows. The amplitude equations are second-order in time because the linear
dispersion relations for the unstable modes are given by a?—a? = ki(c—cs)%+... in
these cases. In general it depends on the linear dispersion relation whether the ampli-
tude equation will be first- or second-order in time. If the first term in the dispersion
relation given in appendix A is the dominating term, the amplitude equation will be
first-order in time, which is the case considered by Maslowe (1977a) who studied the
Holmboe flow.

The nonlinear amplitude equation for a linearly unstable mode contiguous to the
neutral one, sin 7ry, in the Hoiland & Riis flow is studied for various values of @ which
represent an overall Richardson number. Some numerical results are presented in fig-
ures 1-4. We find that there is a region on the @-axis where the nonlinear term is
positive, and it is therefore destabilizing for these values of . However, the nonlinear
term is stabilizing when @ becomes large enough.

The Garcia flow has been studied in the limit when oz — 0 (i.e. the Kelvin—Helmholtz
limit), and it is found that the linear part of the amplitude equation coincides with
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the linear parts of the equations obtained by Drazin (1970) and Nayfeh & Saric (1972)
in the Kelvin-Helmholtz flow, when their equations are considered in the limit
as—> 0. The nonlinear terms in the Garcia flow and in the Kelvin-Helmholtz flow do
not have the same numerical value. They are, however, of the same order of magni-
tude, and are stabilizing in both cases.

In this paper the diffusive effects have not been taken into account except when the
contour L is chosen. A little viscosity will change the trajectories in the phase plane
for the solutions of the amplitude equation (2.31), as was also pointed out by Drazin
(1970) in connection with the solution he obtained in the Kelvin—-Helmholtz flow. In
our model this is seen by adding the diffusive terms to (2.1) and (2.2). It will give rise
to an additional term proportional to d4/dt (a damping term) in the amplitude
equation and this term will change the trajectories in the phase plane.

Appendix A

It is assumed that U(y) and A(y) are analytic functions on [y,,,], and that there is
only one critical layer in the interior of the flow field, i.e. we do not consider cases with
critical layers at the boundaries. The critical layer is at y = yg, where ¥, < ys < y,,
and we assume that U’(y,) + 0.

The neutral mode ¢s, with the wave velocity ¢; and the wavenumber a,, satisfies
the Taylor—Goldstein equation

” | ﬂg U” 2 —
¢ +((U—cs)“—U—cs_a°)¢_o' (A1)

Equation (A 1) has a regular singularity at the critical layer ys. As is well-known
this singularity can be removed by introducing dissipative effects. A small viscosity
within the critical layer will give rise to a phase change across the layer. We consider
the solutions on a contour L that goes around the critical point in the correct way,
Le. in accordance with the phase change across the layer. arg (U —¢;) is defined to
be zero for U —cy > 0 and —wfor U —c5 < 0.

With the above assumption the neutral solution ¢, is proportional to either of
the two solutions ¢, = (U—c )+ Y,, where v = (} —Ji(y,))1€[0, 3]. Here J(y,) =
P(ys)g(U’(ys))~2 is the local Richardson number at the critical layer y = y,, Yy is
analytic on [y;,¥,), and Y. (y:s) + 0 (Miles 1961; Engevik 1973b). In general ¢, is a
many-valued function, and we choose the branch for ¢ that is in accordance with
the definition of arg(U—cs) above, ie. ¢ = (U—ce)t+'¥, for U—cs >0 and
¢s = exp{—im(} £ V}}| U — |4+ ¥, for U —~cs < 0. ¢ is analytic on L.

In Engevik (1973a, 1975) the linear dispersion relation for an unstable mode
contiguous to the neutral one is written as

a?—al =k (c—cs)+ky(c—cs)2+..., (A2)

where
ky=1I1,[1,, ko= (Iy+15)[I,, (A 3)

L= [, 0 1= [, (s ) #a

= [, (o~ e k) Ot
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L], ((Uafis)*' T—ap) i

J, 0 v J
0, = ¢s W’dt+05 luqfsdt
where the integration is along L. 0§, is a solution of (A 1), and 85 and ¢, are linearly

independent solutions. W is the Wronskian, which is a constant in this case, and

2fg u”
h=- ((U—cs)a'(U—cs)ﬂ"“) be.

Appendix B

When the Boussinesq approximation has been applied the equation for the per-
turbation vorticity is

(5i+ V%) V- Ut e, V0 0,90~ 2, (B 1)

Equation (2.1) is obtained by eliminating p, between (B 1) and (2.2). ®4(y, 7) must
satisfy (B 1),i.e

D0y = — Fy(y, 7), (B 2)
where

Fyy,7) = —i[®, ViDF — O, VD, + O,V DF, — DIV, ].
The equation for p,,(y, 7) is obtained from (2.2), i.e.

#Paor = i[ D1y Pt — Oyp1+ @1 pYy — PLpy, ] (B3)
where p, is given by (2.7).

We introduce the expression for ®,(y,7) given by (2.10) into the expression for
Fy(y, 7). In the cases in which we are interested, ¢ is a real function, and ¢,, is purely
imaginary. That ¢,, is purely imaginary follows from (2.27), since k;, = 0 in our case.
Consequently ¢¥ = ¢s and ¢f; = — ¢,,, which yields

Fyy,7) =— "/1' - [AA*] [P12V3 b — P VioPro + P12ViePs — s Vo isl

- w44 (~ o ) ] B4

where we have used (2.16) and (2.24) for ¢s and ¢,, and the fact that k,=0.
Introducing the expression for @, (y,7) given by (2.10) into (B 2) and using (B 4),

we get ) ’
b= | (- ot =) ¥ - (59)

@901 given by (B 5) will have no singularity on [y,, y,] for the flows studied in §§3 and 4
or for any other flows of the same class (cf. §2).

The right-hand side of (B 3) is found to be zero when we introduce p, given by (2.7)
into it. Therefore

Pann = 0. (B 6)
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Equation (B 5) also gives Schade’s result for the inviscid mean-flow distortion
(Schade 1964, (16)). In Schade’s case U = tanhy, § = 0 and ¢ = sechy. It should be
noted that in this case ¢,, is not purely imaginary, because k, is now purely imaginary.
However, we obtain (B 5) also in this case (with # = 0 of course), but in addition we
get AdA*/dr = A*dA/dr. In Schade’s case the mean-flow distortion given by (B 5)
is singular at the critical layer, and he therefore rejected it. Instead he included the
effect of the viscosity within the critical layer, and found that the mean-flow distor-
tion had to be zero for infinite Reynolds number.

Maslowe (1977b) considered the mean-flow distortion for finite Reynolds numbers
for the model studied by Schade. Recently Huerre (1980) studied the same model and
found that the effect of the mean-flow distortion should not be neglected.
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